Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-36685729

RESUMO

TLN-1/talin is a conserved focal adhesion protein that forms part of the linkage between the cytoplasmic tail of integrin and the actin cytoskeleton. In C. elegans , TLN-1 is expressed strongly in striated muscle and the gonadal sheath cells. Here, we report that a CRISPR-generated TLN-1 allele TLN-1(W387A), predicted to affect binding of talin to integrins, results in mild phenotypes, including motility defects and ovulation defects. The arrangement of the actin cytoskeleton in the body wall muscles, spermatheca, and sheath appears identical in wild type and TLN-1(W387A) animals. This analysis suggests that W387 in TLN-1 does not have a major effect on the binding of talin to integrin in vivo .

2.
Life (Basel) ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431013

RESUMO

Protein kinase A (PKA), which regulates a diverse set of biological functions downstream of cyclic AMP (cAMP), is a tetramer consisting of two catalytic subunits (PKA-C) and two regulatory subunits (PKA-R). When cAMP binds the PKA-R subunits, the PKA-C subunits are released and interact with downstream effectors. In Caenorhabditis elegans (C. elegans), PKA-C and PKA-R are encoded by kin-1 and kin-2, respectively. This review focuses on the contributions of work in C. elegans to our understanding of the many roles of PKA, including contractility and oocyte maturation in the reproductive system, lipid metabolism, physiology, mitochondrial function and lifespan, and a wide variety of behaviors. C. elegans provides a powerful genetic platform for understanding how this kinase can regulate an astounding variety of physiological responses.

3.
Anticancer Agents Med Chem ; 20(14): 1673-1687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32560617

RESUMO

BACKGROUND AND PURPOSE: Green nanotechnology is an interesting method for the synthesis of functional nanoparticles. Because of their wide application, they have set up great attention in recent years. OBJECTIVE: The present research examines the green synthesis of Ag and zero-valent iron nanoparticles (AgNPs, ZVINPs) by Feijoa sellowiana fruit extract. In this synthesis, no stabilizers or surfactants were applied. METHODS: Eco-friendly synthesis of Iron and biogenic synthesis of Ag nanoparticles were accomplished by controlling critical parameters such as concentration, incubation period and temperature. Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM), Energy-Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction analysis (XRD), Dynamic Light Scattering (DLS) and UV-Vis were applied to characterize NPs. The cytotoxicity of NPs was investigated in two cell lines, MCF-7 (breast cancer) and AGS (human gastric carcinoma). A high-performance liquid chromatography (HPLC) analysis was also performed for characterization of phenolic acids in the extract. RESULTS: Both NPs displayed powerful anticancer activities against two tumor cell lines with little effect on BEAS-2B normal cells. Synthesized AgNPs and ZVINPs inhibited the growth of all selected bacteria. Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumonia, Staphylococcus aureus, Enterococcus faecalis, Acinetobacter baumannii and Escherichia coli have been studied in two stages. We initially examined the ATCCs followed by clinical strain isolation. Based on the results from resistant strains, we showed that nanoparticles were superior to conventional antibiotics. DPPH (diphenyl-1-picrylhydrazyl) free radical scavenging assay and iron chelating activity were used for the determination of antioxidant properties. Results showed a high antioxidant activity of scavenging free radicals for ZVINPs and powerful iron-chelating activity for AgNPs. Based on the HPLC data, catechin was the major phenolic compound in the extract. CONCLUSION: Our synthesized nanoparticles displayed potent cytotoxic, antibacterial and antioxidant activities.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Feijoa/química , Ferro/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feijoa/metabolismo , Frutas/química , Frutas/metabolismo , Humanos , Ferro/química , Ferro/metabolismo , Estrutura Molecular , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Prata/química , Prata/metabolismo , Relação Estrutura-Atividade
4.
Iran J Pharm Res ; 19(4): 306-320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33841544

RESUMO

Biogenic synthesis of silver nanoparticles (SNPs) has great attention of scientists, as it provides clean, biocompatible, non-toxic and inexpensive fabrication. In this study, F. sellowiana leaf extract was used for synthesizing SNPs which reduces silver nitrate into silver zero-valent. SNPs were characterized by UV, FTIR, XRD, SEM-EDS, and TEM analysis. They were also examined for their biological activities. The presence of biosynthesized SNPs was characterized by UV-visible spectroscopy and also crystal nature of SNPs was identified with XRD analysis. FT-IR spectrum was used to confirm the presence of different functional groups in the biomolecules which act as a capping agent for the nanoparticles. The morphology of SNPs was explored using SEM and the presence of silver was confirmed by elemental analysis. The size of the nanoparticles was in the range of 20-50 nm determined by TEM. The green synthesized SNPs showed good antibacterial activities against both gram-negative and gram-positive bacteria and also in resistant clinically isolated pathogens. Furthermore, the green synthesized SNPs showed reliable anticancer activity on the gastric adenocarcinoma (AGS) and breast (MCF-7) cancer cell lines with little effect on normal (HFF) cells. The in-vitro antioxidant activity of SNPs showed a significant effect on the scavenging of free radicals and iron chelating activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...